23 KiB
23 KiB
LLMemory Architecture
System Overview
LLMemory is a three-layer system:
- CLI Layer - User/agent interface (Commander.js)
- Search Layer - Query processing and ranking (LIKE → FTS5 → Fuzzy)
- Storage Layer - Persistent data (SQLite)
┌─────────────────────────────────────┐
│ CLI Layer │
│ (memory store/search/list/prune) │
└──────────────┬──────────────────────┘
│
┌──────────────▼──────────────────────┐
│ Search Layer │
│ Phase 1: LIKE search │
│ Phase 2: FTS5 + BM25 ranking │
│ Phase 3: + Trigram fuzzy matching │
└──────────────┬──────────────────────┘
│
┌──────────────▼──────────────────────┐
│ Storage Layer │
│ SQLite Database │
│ - memories (content, metadata) │
│ - tags (normalized) │
│ - memory_tags (many-to-many) │
│ - memories_fts (FTS5 virtual) │
│ - trigrams (fuzzy index) │
└─────────────────────────────────────┘
Data Model
Phase 1 Schema (MVP)
┌─────────────────┐
│ memories │
├─────────────────┤
│ id │ PK
│ content │ TEXT (max 10KB)
│ created_at │ INTEGER (Unix timestamp)
│ entered_by │ TEXT (agent name)
│ expires_at │ INTEGER (nullable)
└─────────────────┘
│
│ 1:N
▼
┌─────────────────┐ ┌─────────────────┐
│ memory_tags │ N:M │ tags │
├─────────────────┤ ├─────────────────┤
│ memory_id │ FK ───│ id │ PK
│ tag_id │ FK │ name │ TEXT (unique, NOCASE)
└─────────────────┘ │ created_at │ INTEGER
└─────────────────┘
Phase 2 Schema (+ FTS5)
Adds virtual table for full-text search:
┌─────────────────────┐
│ memories_fts │ Virtual Table (FTS5)
├─────────────────────┤
│ rowid → memories.id │
│ content (indexed) │
└─────────────────────┘
│
│ Synced via triggers
▼
┌─────────────────┐
│ memories │
└─────────────────┘
Triggers:
memories_ai: INSERT into memories → INSERT into memories_ftsmemories_au: UPDATE memories → UPDATE memories_ftsmemories_ad: DELETE memories → DELETE from memories_fts
Phase 3 Schema (+ Trigrams)
Adds trigram index for fuzzy matching:
┌─────────────────┐
│ trigrams │
├─────────────────┤
│ trigram │ TEXT (3 chars)
│ memory_id │ FK → memories.id
│ position │ INTEGER (for proximity)
└─────────────────┘
│
│ Generated on insert/update
▼
┌─────────────────┐
│ memories │
└─────────────────┘
Search Algorithm Evolution
Phase 1: LIKE Search
Algorithm:
function search_like(query, filters):
# Case-insensitive wildcard matching
sql = "SELECT * FROM memories WHERE LOWER(content) LIKE LOWER('%' || ? || '%')"
# Apply filters
if filters.tags:
sql += " AND memory_id IN (SELECT memory_id FROM memory_tags WHERE tag_id IN (...))"
if filters.after:
sql += " AND created_at >= ?"
# Exclude expired
sql += " AND (expires_at IS NULL OR expires_at > now())"
# Order by recency
sql += " ORDER BY created_at DESC LIMIT ?"
return execute(sql, params)
Strengths:
- Simple, fast for small datasets
- No dependencies
- Predictable behavior
Weaknesses:
- No relevance ranking
- Slow for large datasets (full table scan)
- No fuzzy matching
- No phrase queries or boolean logic
Performance: O(n) where n = number of memories
Target: <50ms for <500 memories
Phase 2: FTS5 Search
Algorithm:
function search_fts5(query, filters):
# Build FTS5 query
fts_query = build_fts5_query(query) # Handles AND/OR/NOT, quotes, prefixes
# FTS5 MATCH with BM25 ranking
sql = """
SELECT m.*, mf.rank as relevance
FROM memories_fts mf
JOIN memories m ON m.id = mf.rowid
WHERE memories_fts MATCH ?
AND (m.expires_at IS NULL OR m.expires_at > now())
"""
# Apply filters (same as Phase 1)
# ...
# Order by FTS5 rank (BM25 algorithm)
sql += " ORDER BY mf.rank LIMIT ?"
return execute(sql, params)
function build_fts5_query(query):
# Transform grep-like to FTS5
# "docker compose" → "docker AND compose"
# "docker OR podman" → "docker OR podman" (unchanged)
# '"exact phrase"' → '"exact phrase"' (unchanged)
# "docker*" → "docker*" (unchanged)
if has_operators(query):
return query
# Implicit AND
terms = query.split()
return " AND ".join(terms)
FTS5 Tokenization:
- Tokenizer:
porter unicode61 remove_diacritics 2 - Porter: Stemming (running → run, databases → database)
- unicode61: Unicode support
- remove_diacritics: Normalize accented characters (café → cafe)
BM25 Ranking:
score = Σ(IDF(term) * (f(term) * (k1 + 1)) / (f(term) + k1 * (1 - b + b * |D| / avgdl)))
Where:
- IDF(term) = Inverse Document Frequency (rarer terms score higher)
- f(term) = Term frequency in document
- |D| = Document length
- avgdl = Average document length
- k1 = 1.2 (term frequency saturation)
- b = 0.75 (length normalization)
Strengths:
- Fast search with inverted index
- Relevance ranking (BM25)
- Boolean operators, phrase queries, prefix matching
- Scales to 100K+ documents
Weaknesses:
- No fuzzy matching (typo tolerance)
- FTS5 index overhead (~30% storage)
- More complex setup (triggers needed)
Performance: O(log n) for index lookup
Target: <100ms for 10K memories
Phase 3: Fuzzy Search
Algorithm:
function search_fuzzy(query, filters):
# Step 1: Try FTS5 exact match
results = search_fts5(query, filters)
# Step 2: If too few results, try fuzzy
if len(results) < 5 and filters.fuzzy != false:
fuzzy_results = search_trigram(query, filters)
results = merge_dedup(results, fuzzy_results)
# Step 3: Re-rank by combined score
for result in results:
result.score = calculate_combined_score(result, query)
results.sort(by=lambda r: r.score, reverse=True)
return results[:filters.limit]
function search_trigram(query, threshold=0.7, limit=10):
# Extract query trigrams
query_trigrams = extract_trigrams(query) # ["doc", "ock", "cke", "ker"]
# Find candidates by trigram overlap
sql = """
SELECT m.id, m.content, COUNT(DISTINCT tr.trigram) as matches
FROM memories m
JOIN trigrams tr ON tr.memory_id = m.id
WHERE tr.trigram IN (?, ?, ?, ...)
AND (m.expires_at IS NULL OR m.expires_at > now())
GROUP BY m.id
HAVING matches >= ?
ORDER BY matches DESC
LIMIT ?
"""
min_matches = ceil(len(query_trigrams) * threshold)
candidates = execute(sql, query_trigrams, min_matches, limit * 2)
# Calculate edit distance and combined score
scored = []
for candidate in candidates:
edit_dist = levenshtein(query, candidate.content[:len(query)*3])
trigram_sim = candidate.matches / len(query_trigrams)
normalized_edit = 1 - (edit_dist / max(len(query), len(candidate.content)))
score = 0.6 * trigram_sim + 0.4 * normalized_edit
if score >= threshold:
scored.append((candidate, score))
scored.sort(by=lambda x: x[1], reverse=True)
return [c for c, s in scored[:limit]]
function extract_trigrams(text):
# Normalize: lowercase, remove punctuation, collapse whitespace
normalized = text.lower().replace(/[^\w\s]/g, ' ').replace(/\s+/g, ' ').trim()
# Add padding for boundary matching
padded = " " + normalized + " "
# Sliding window of 3 characters
trigrams = []
for i in range(len(padded) - 2):
trigram = padded[i:i+3]
if trigram.strip().len() == 3: # Skip whitespace-only
trigrams.append(trigram)
return unique(trigrams)
function levenshtein(a, b):
# Wagner-Fischer algorithm with single-row optimization
if len(a) == 0: return len(b)
if len(b) == 0: return len(a)
prev_row = [0..len(b)]
for i in range(len(a)):
cur_row = [i + 1]
for j in range(len(b)):
cost = 0 if a[i] == b[j] else 1
cur_row.append(min(
cur_row[j] + 1, # deletion
prev_row[j + 1] + 1, # insertion
prev_row[j] + cost # substitution
))
prev_row = cur_row
return prev_row[len(b)]
function calculate_combined_score(result, query):
# BM25 from FTS5 (if available)
bm25_score = result.fts_rank if result.has_fts_rank else 0
# Trigram similarity
trigram_score = result.trigram_matches / len(extract_trigrams(query))
# Edit distance (normalized)
edit_dist = levenshtein(query, result.content[:len(query)*3])
edit_score = 1 - (edit_dist / max(len(query), len(result.content)))
# Recency boost (exponential decay over 90 days)
days_ago = (now() - result.created_at) / 86400
recency_score = max(0, 1 - (days_ago / 90))
# Weighted combination
score = (0.4 * bm25_score +
0.3 * trigram_score +
0.2 * edit_score +
0.1 * recency_score)
return score
Trigram Similarity (Jaccard Index):
similarity = |trigrams(query) ∩ trigrams(document)| / |trigrams(query)|
Example:
query = "docker" → trigrams: ["doc", "ock", "cke", "ker"]
document = "dcoker" → trigrams: ["dco", "cok", "oke", "ker"]
intersection = ["ker"] → count = 1
similarity = 1 / 4 = 0.25 (below threshold, but edit distance is 2)
Better approach: Edit distance normalized by length
edit_distance("docker", "dcoker") = 2
normalized = 1 - (2 / 6) = 0.67 (above threshold 0.6)
Strengths:
- Handles typos (edit distance ≤2)
- Partial matches ("docker" finds "dockerization")
- Cascading strategy (fast exact, fallback to fuzzy)
- Configurable threshold
Weaknesses:
- Trigram table is large (~3x content size)
- Slower than FTS5 alone
- Tuning threshold requires experimentation
Performance: O(log n) + O(m) where m = trigram candidates
Target: <200ms for 10K memories with fuzzy
Memory Lifecycle
┌──────────┐
│ Store │
└────┬─────┘
│
▼
┌────────────────────┐
│ Validate: │
│ - Length (<10KB) │
│ - Tags (parse) │
│ - Expiration │
└────┬───────────────┘
│
▼
┌────────────────────┐ ┌─────────────────┐
│ Insert: │────▶│ Trigger: │
│ - memories table │ │ - Insert FTS5 │
│ - Link tags │ │ - Gen trigrams │
└────┬───────────────┘ └─────────────────┘
│
▼
┌────────────────────┐
│ Searchable │
└────────────────────┘
│
│ (time passes)
▼
┌────────────────────┐
│ Expired? │───No──▶ Continue
└────┬───────────────┘
│ Yes
▼
┌────────────────────┐
│ Prune Command │
│ (manual/auto) │
└────┬───────────────┘
│
▼
┌────────────────────┐ ┌─────────────────┐
│ Delete: │────▶│ Trigger: │
│ - memories table │ │ - Delete FTS5 │
│ - CASCADE tags │ │ - Delete tris │
└────────────────────┘ └─────────────────┘
Query Processing Flow
Phase 1 (LIKE)
User Query: "docker networking"
│
▼
Parse Query: Extract terms, filters
│
▼
Build SQL: LIKE '%docker%' AND LIKE '%networking%'
│
▼
Apply Filters: Tags, dates, agent
│
▼
Execute: Sequential scan through memories
│
▼
Order: By created_at DESC
│
▼
Limit: Take top N results
│
▼
Format: Plain text / JSON / Markdown
Phase 2 (FTS5)
User Query: "docker AND networking"
│
▼
Parse Query: Identify operators, quotes, prefixes
│
▼
Build FTS5 Query: "docker AND networking" (already valid)
│
▼
FTS5 MATCH: Inverted index lookup
│
▼
BM25 Ranking: Calculate relevance scores
│
▼
Apply Filters: Tags, dates, agent (on results)
│
▼
Order: By rank (BM25 score)
│
▼
Limit: Take top N results
│
▼
Format: With relevance scores
Phase 3 (Fuzzy)
User Query: "dokcer networking"
│
▼
Try FTS5: "dokcer AND networking"
│
▼
Results: 0 (no exact match)
│
▼
Trigger Fuzzy: Extract trigrams
│
├─▶ "dokcer" → ["dok", "okc", "kce", "cer"]
└─▶ "networking" → ["net", "etw", "two", ...]
│
▼
Find Candidates: Query trigrams table
│
▼
Calculate Similarity: Trigram overlap + edit distance
│
├─▶ "docker" → similarity = 0.85 (good match)
└─▶ "networking" → similarity = 1.0 (exact)
│
▼
Filter: Threshold ≥ 0.7
│
▼
Re-rank: Combined score (trigram + edit + recency)
│
▼
Merge: With FTS5 results (dedup by ID)
│
▼
Limit: Take top N results
│
▼
Format: With relevance scores
Indexing Strategy
Phase 1 Indexes
-- Recency queries (ORDER BY created_at DESC)
CREATE INDEX idx_memories_created ON memories(created_at DESC);
-- Expiration filtering (WHERE expires_at > now())
CREATE INDEX idx_memories_expires ON memories(expires_at)
WHERE expires_at IS NOT NULL;
-- Tag lookups (JOIN on tag_id)
CREATE INDEX idx_tags_name ON tags(name);
-- Tag filtering (JOIN memory_tags on memory_id)
CREATE INDEX idx_memory_tags_tag ON memory_tags(tag_id);
Query plans:
-- Search query uses indexes:
EXPLAIN QUERY PLAN
SELECT * FROM memories WHERE created_at > ? ORDER BY created_at DESC;
-- Result: SEARCH memories USING INDEX idx_memories_created
EXPLAIN QUERY PLAN
SELECT * FROM memories WHERE expires_at > strftime('%s', 'now');
-- Result: SEARCH memories USING INDEX idx_memories_expires
Phase 2 Indexes (+ FTS5)
-- FTS5 creates inverted index automatically
CREATE VIRTUAL TABLE memories_fts USING fts5(content, ...);
-- Generates internal tables: memories_fts_data, memories_fts_idx, memories_fts_config
FTS5 Index Structure:
Term → Document Postings List
"docker" → [1, 5, 12, 34, 56, ...]
"compose" → [5, 12, 89, ...]
"networking" → [5, 34, 67, ...]
Query "docker AND compose" → intersection([1,5,12,34,56], [5,12,89]) = [5, 12]
Phase 3 Indexes (+ Trigrams)
-- Trigram lookups (WHERE trigram IN (...))
CREATE INDEX idx_trigrams_trigram ON trigrams(trigram);
-- Cleanup on memory deletion (CASCADE via memory_id)
CREATE INDEX idx_trigrams_memory ON trigrams(memory_id);
Trigram Index Structure:
Trigram → Memory IDs
"doc" → [1, 5, 12, 34, ...] (all memories with "doc")
"ock" → [1, 5, 12, 34, ...] (all memories with "ock")
"cke" → [1, 5, 12, ...] (all memories with "cke")
Query "docker" trigrams ["doc", "ock", "cke", "ker"]
→ Find intersection: memories with all 4 trigrams (or ≥ threshold)
Performance Optimization
Database Configuration
-- WAL mode for better concurrency
PRAGMA journal_mode = WAL;
-- Memory-mapped I/O for faster reads
PRAGMA mmap_size = 268435456; -- 256MB
-- Larger cache for better performance
PRAGMA cache_size = -64000; -- 64MB (negative = KB)
-- Synchronous writes (balance between speed and durability)
PRAGMA synchronous = NORMAL; -- Not FULL (too slow), not OFF (unsafe)
-- Auto-vacuum to prevent bloat
PRAGMA auto_vacuum = INCREMENTAL;
Query Optimization
// Use prepared statements (compiled once, executed many times)
const searchStmt = db.prepare(`
SELECT * FROM memories
WHERE LOWER(content) LIKE LOWER(?)
ORDER BY created_at DESC
LIMIT ?
`);
// Transaction for bulk inserts
const insertMany = db.transaction((memories) => {
for (const memory of memories) {
insertStmt.run(memory);
}
});
Trigram Pruning
// Prune common trigrams (low information value)
// E.g., "the", "and", "ing" appear in most memories
const pruneCommonTrigrams = db.prepare(`
DELETE FROM trigrams
WHERE trigram IN (
SELECT trigram FROM trigrams
GROUP BY trigram
HAVING COUNT(*) > (SELECT COUNT(*) * 0.5 FROM memories)
)
`);
// Run after bulk imports
pruneCommonTrigrams.run();
Result Caching
// LRU cache for frequent queries
const LRU = require('lru-cache');
const queryCache = new LRU({
max: 100, // Cache 100 queries
ttl: 1000 * 60 * 5 // 5 minute TTL
});
function search(query, filters) {
const cacheKey = JSON.stringify({ query, filters });
if (queryCache.has(cacheKey)) {
return queryCache.get(cacheKey);
}
const results = executeSearch(query, filters);
queryCache.set(cacheKey, results);
return results;
}
Error Handling
Database Errors
try {
db.prepare(sql).run(params);
} catch (error) {
if (error.code === 'SQLITE_BUSY') {
// Retry after backoff
await sleep(100);
return retry(operation, maxRetries - 1);
}
if (error.code === 'SQLITE_CONSTRAINT') {
// Validation error (content too long, duplicate tag, etc.)
throw new ValidationError(error.message);
}
if (error.code === 'SQLITE_CORRUPT') {
// Database corruption - suggest recovery
throw new DatabaseCorruptError('Database corrupted, run: memory recover');
}
// Unknown error
throw error;
}
Migration Errors
async function migrate(targetVersion) {
const currentVersion = getCurrentSchemaVersion();
// Backup before migration
await backupDatabase(`backup-v${currentVersion}.db`);
try {
db.exec('BEGIN TRANSACTION');
// Run migrations
for (let v = currentVersion + 1; v <= targetVersion; v++) {
await runMigration(v);
}
db.exec('COMMIT');
console.log(`Migrated to version ${targetVersion}`);
} catch (error) {
db.exec('ROLLBACK');
console.error('Migration failed, rolling back');
// Restore backup
await restoreDatabase(`backup-v${currentVersion}.db`);
throw error;
}
}
Security Considerations
Input Validation
// Prevent SQL injection (prepared statements)
const stmt = db.prepare('SELECT * FROM memories WHERE content LIKE ?');
stmt.all(`%${userInput}%`); // Safe: userInput is parameterized
// Validate content length
if (content.length > 10000) {
throw new ValidationError('Content exceeds 10KB limit');
}
// Sanitize tags (only alphanumeric, hyphens, underscores)
const sanitizeTag = (tag) => tag.replace(/[^a-z0-9\-_]/gi, '');
Sensitive Data Protection
// Warn if sensitive patterns detected
const sensitivePatterns = [
/password\s*[:=]\s*\S+/i,
/api[_-]?key\s*[:=]\s*\S+/i,
/token\s*[:=]\s*\S+/i,
/secret\s*[:=]\s*\S+/i
];
function checkSensitiveData(content) {
for (const pattern of sensitivePatterns) {
if (pattern.test(content)) {
console.warn('⚠️ Warning: Potential sensitive data detected');
console.warn('Consider storing credentials in a secure vault instead');
return true;
}
}
return false;
}
File Permissions
# Database file should be user-readable only
chmod 600 ~/.config/opencode/memories.db
# Backup files should have same permissions
chmod 600 ~/.config/opencode/memories-backup-*.db
Scalability Limits
Phase 1 (LIKE)
- Max memories: ~500 (performance degrades beyond)
- Query latency: O(n) - linear scan
- Storage: ~250KB for 500 memories
Phase 2 (FTS5)
- Max memories: ~50K (comfortable), 100K+ (possible)
- Query latency: O(log n) - index lookup
- Storage: +30% for FTS5 index (~325KB for 500 memories)
Phase 3 (Fuzzy)
- Max memories: 100K+ (with trigram pruning)
- Query latency: O(log n) + O(m) where m = fuzzy candidates
- Storage: +200% for trigrams (~750KB for 500 memories)
- Mitigated by pruning common trigrams
Migration Triggers
Phase 1 → Phase 2:
- Dataset > 500 memories
- Query latency > 500ms
- Manual user request
Phase 2 → Phase 3:
- User reports needing fuzzy search
- High typo rates in queries
- Manual user request
Future Enhancements
Vector Embeddings (Phase 4?)
- Semantic search ("docker" → "containerization")
- Requires embedding model (~100MB)
- SQLite-VSS extension
- Hybrid: BM25 (lexical) + Cosine similarity (semantic)
Automatic Summarization
- LLM-generated summaries for long memories
- Reduces token usage in search results
- Trade-off: API dependency
Memory Versioning
- Track edits to memories
- Show history
- Revert to previous version
Conflict Detection
- Identify contradictory memories
- Suggest consolidation
- Flag for review
Collaborative Features
- Share memories between agents
- Team-wide memory pool
- Privacy controls
Document Version: 1.0
Last Updated: 2025-10-29
Status: Planning Complete, Implementation Pending